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ABSTRACT

STITCH is a database of protein–chemical inter-
actions that integrates many sources of experimen-
tal and manually curated evidence with text-mining
information and interaction predictions. Available at
http://stitch.embl.de, the resulting interaction
network includes 390 000 chemicals and 3.6 million
proteins from 1133 organisms. Compared with the
previous version, the number of high-confidence
protein–chemical interactions in human has
increased by 45%, to 367 000. In this version, we
added features for users to upload their own data
to STITCH in the form of internal identifiers,
chemical structures or quantitative data. For
example, a user can now upload a spreadsheet
with screening hits to easily check which inter-
actions are already known. To increase the
coverage of STITCH, we expanded the text mining
to include full-text articles and added a prediction
method based on chemical structures. We further
changed our scheme for transferring interactions
between species to rely on orthology rather than
protein similarity. This improves the performance
within protein families, where scores are now
transferred only to orthologous proteins, but not to
paralogous proteins. STITCH can be accessed with
a web-interface, an API and downloadable files.

INTRODUCTION

Protein–chemical interactions are essential for any biolo-
gical system; for example, they drive the metabolism of the

cell or initiate many signaling cascades and most pharma-
ceutical interventions. A large collection of such inter-
actions can, therefore, be used to study a variety of
cellular functions and the impact of drug treatment on
the cell. For such research, it is important to have, as
complete as possible, data on protein–chemical inter-
actions. By treating proteins and chemicals as nodes of a
graph, which are linked by edges if they have been found to
interact (1), we can adopt a network view that enables us to
integrate many different sources. The concept of STITCH
(‘search tool for interacting chemicals’) was from the begin-
ning to combine sources of protein–chemical interactions
from experimental databases, pathway databases, drug–
target databases, text mining and drug–target predictions
into a unified network (2–4). This network abstracts the
complexity of the underlying data sources, making large-
scale studies possible. At the same time, links to the original
sources are retained, making it possible to trace the prov-
enance of the data. The underlying STITCH database can
be accessed in multiple ways: via an intuitive web interface,
via download files (for large-scale analysis) and via an API
(enabling automated access on a small to medium scale).
Here, we present recent improvements to the database and
user interface of STITCH. Already in the previous
versions, it has been possible to query STITCH using
protein or chemical names, InChIKeys and SMILES
strings. New in this version is the possibility to upload
spreadsheets with chemical descriptors and experimental
data that can be directly added to the network, as described
later in text. We also for the first time use the evidence
transfer algorithm described for the STRING 9.1
database (5) to improve the performance for protein
families.
Compared with STITCH 3, we use the same underlying

set of proteins, containing 1133 species. We updated the
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set of chemicals (6), and find interactions with 390 000
distinct chemicals. In human, high-confidence interactions
for 172 000 compounds are available in STITCH 4
(Figure 1), compared with 110 000 in STITCH 3 (4). In
total, the human protein–chemical interaction network
contains 2.2 million interactions (Figure 1). Applying
different confidence thresholds, 570 000 interactions are
of medium confidence (score cutoff 0.5) and 367 000 inter-
actions are of high confidence (cutoff 0.7).

SOURCES OF INTERACTIONS

Protein–chemical interactions are presented in four differ-
ent channels: experiments, databases, text mining and pre-
dicted interactions. We import the following sources of
experimental information: ChEMBL [interactions with
reported Ki or IC50 (7)], PDSP Ki Database (8), PDB
(9) and—new to STITCH—data from two large-scale
studies on kinase–ligand interactions (10,11). From the
latter studies, we extracted 74 291 interactions between
229 compounds and 414 human kinases. We converted
the reported residual kinase activities (10) and kinase
affinities (11) to probabilistic scores, which gave rise to
14 187, 9431 and 5977 interactions of at least low,
medium and high confidence, respectively. The second
channel is made up of manually curated drug–target data-
bases: DrugBank (12), GLIDA (13), Matador (14), TTD
(15) and CTD (16); and pathway databases: KEGG (17),
NCI/Nature Pathway Interaction Database (18),
Reactome (19) and BioCyc (20).

PREDICTION OF INTERACTIONS

STITCH contains verified interactions (from the sources
listed earlier in text) and predicted interactions, based
on text mining and other prediction methods. In the text-
mining channels, interactions were extracted from the lit-
erature using both co-occurrence text mining and Natural
Language Processing (21,22). For the first time for
STITCH, we not only use data from MEDLINE abstracts
and OMIM (23) but also from full-text articles freely avail-
able from PubMed Central or publishers’ Web sites.

In previous versions, we have used medical subject
headings (MeSH) terms in text mining and when import-
ing external databases. These terms allowed us to expand
concepts like ‘alpha adrenergic receptors’ to individual
proteins. We used to map MeSH terms to proteins using
a combination of automatic and manual approaches,
which led to errors in some cases. Furthermore, the
mapping was only valid for human proteins. We have,
therefore, started to use terms from the Gene Ontology
[GO terms, (24)] to define groups of proteins. We excluded
GO annotations based on mutant phenotypes (IMP) and
electronic annotations (IEA). We then checked the
coverage of GO annotations for all species in STITCH.
We only mapped GO terms to proteins for species
where at least 10% of the proteins have been annotated,
namely Drosophila melanogaster, Escherichia coli, Homo
sapiens, Mus musculus, Saccharomyces cerevisiae and
Schizosaccharomyces pombe.

As the coverage of synonyms is lower than for MeSH
terms, we manually added additional synonyms to GO

Figure 1. Cumulative distribution of scores. For each confidence score threshold, the plot shows the number of chemicals (top) and protein–chemical
interactions (bottom) that have at least this confidence score in the human protein–chemical network. For example, there are 172 000 chemicals with
a high-confidence interaction (score at least 0.7). As there are many interactions with low confidence scores, we use a minimum score threshold of
0.15. Steps in the data correspond to large numbers of compounds that have the same maximum score in manually curated databases or the
ChEMBL database (with different confidence levels).

2 Nucleic Acids Research, 2013

 at Z
entralbibliothek on D

ecem
ber 4, 2013

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

,
,
to 
,
,
,
,
,
above
,
papers 
websites
``
''
,
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


terms to increase the text-mining sensitivity. As one GO
term corresponds to multiple proteins, the resulting confi-
dence score for the individual protein–chemical inter-
actions should be down-weighted compared with
interactions that are directly associated with a single
protein. We, therefore, determined a correction factor
through benchmarking (as a function of the number of
member proteins in the GO term). For each channel, we
looked at the GO terms that are interacting with chemicals.
We then checked if the member proteins that are part of the
GO terms are in turn interacting with chemicals. For each
of these chemicals, we determined the fraction of member
proteins that are interacting. For example, if a drug was
known to bind two of the three a2-adrenergic receptors, it
was added as a data point (x=3, y=2/3) to the bench-
mark data. The data points were then fitted for each
channel by the following function:

f xð Þ ¼ x� að Þ
�e

b
x

For larger groups, the function approaches x�1 (i.e. inter-
acting with one protein is not predictive for the other
proteins).

In this version of STITCH, we introduced a fourth
channel, namely predicted protein–chemical interactions
based on chemical structure. Countless articles on the pre-
diction of drug–target interactions have been published in
the last years [e.g. (25–27), reviewed in (28)]. In many cases,
however, the actual predictions are not available. We,
therefore, implemented a relatively simple and transparent
prediction scheme based on Random Forests (29,30): for
each target for which >100 binding partners are known
from the ChEMBL database, we attempted to make a pre-
diction. To avoid biases, we first excluded highly similar
chemicals, enforcing a maximum Tanimoto similarity of
0.9 (using Algorithm 2 described by Hobohm) (31) using
2D chemical fingerprints calculated with the chemistry de-
velopment kit (32,33). We then added ten times as many
random chemicals as non-binders to the training set and
used the fingerprints as predictors for all compounds.
Using 10-fold cross-validation, we assessed how predictive
the model is (by calculating the Pearson correlation coeffi-
cient between the training data and the cross-validation
results). We used the correlation as a correction factor to
decrease the confidence score of the predicted interactions,
which were predicted for all compounds occurring in the
ChEMBL database. We repeated this procedure three
times for each compound and used the median predicted
score, to decrease the effect of the random negative set. As
interactions were predicted from the experimental channel,
the predictions and experimental channels are not inde-
pendent of each other. To compute the combined score
(which is shown on the network), we therefore took the
highest of either score, instead of combining the scores in
a Bayesian fashion as it is done for the other channels.
In total, predictions were made for 767 proteins across
15 species. The median correlation between the training
data and the cross-validation prediction was 0.90.

Links between compounds were also extracted from the
aforementioned sources, if possible. (e.g. chemical reac-
tions from pathway databases or co-mentioned chemicals

from text mining.) We also predicted shared mechanisms
of action from MeSH pharmacological actions, the
Connectivity Map using the DIPS method (34), which
tests for similar changes in gene expression on
compound treatment, and from screening data from the
Developmental Therapeutics Program NCI/NIH (35).
The latter screening data replaces our previous analysis
of the NCI60 panel. We considered only the 70 of 115
cell lines against which >10 000 compounds have been
screened and centered the negative logarithm of GI50
values with respect to both compounds and cell lines.
For the 47 692 compounds in the data set, we calculated
all-against-all covariance across cell lines and converted
these to probabilistic scores. This resulted in 114 072,
24 889 and 6890 pairs of compounds of at least low,
medium and high confidence, respectively.
To account for the fact that many interactions are

determined in model species, we transfer interactions
between species. Previously, the sequence similarity
between two proteins was used to determine the confi-
dence in the transferred score. This had the disadvantage
that when transferring evidence from a selective binder
(e.g. inhibiting only one subtype of a receptor), all
subtypes of the receptor in the target species would
receive a similar score. In the new scheme, only the
orthologous protein receives the evidence from the
specific compound.

INTEGRATION WITH USER DATA

Users can now upload a spreadsheet (e.g. in Microsoft
Excel format) with experimental data to STITCH using
the ‘batch import’ functionality (Figure 2). For each
compound, the spreadsheet may contain: the name of
the compound, the chemical structure (as SMILES
string, InChI or InChIKey), an internal identifier and a
readout value. STITCH uses the name and chemical struc-
ture to find the compound in the STITCH database.
The name provided by the user can then be shown in
the interaction network, and the downloadable files
contain both the name and the user’s internal identifier
(if provided). The readout value may be a numerical
value, e.g. the activity of a compound in a screen. The
user can then select a palette from the ColorBrewer2
color schemes (36). The palette is used to convert the nu-
merical value into a color, which is then used to highlight
the compounds in the network with a colored halo
(Figure 3). It is also possible to directly specify colors
(in standard hexadecimal notation).

USE CASES

The majority of users access STITCH via the web inter-
face, where networks can be retrieved using single or
multiple names of proteins or chemicals. Furthermore,
users can query STITCH with protein sequences and
chemical structures (in the form of SMILES strings).
The networks can then be explored interactively or
saved in different formats, including publication-quality
images. Proteins and chemicals can be clustered in the
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Figure 2. Data upload. The user can use the batch import form to upload a spreadsheet, e.g. from Microsoft Excel (a). STITCH will then show the
first five rows of the spreadsheet and ask the user to identify columns that contain the name, chemical structure or a numerical readout (b). Selected
columns are highlighted in green. STITCH uses heuristics to suggest which kind of information the columns contain, e.g. by identifying SMILES
strings as structural descriptors.
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interactive network viewer and enriched GO terms among
the proteins can be computed (5,37). The set of all inter-
actions is also available for download under Creative
Commons licenses (with separate commercial licensing
for a subset). In this way, STITCH can be used to drive
large-scale studies. Many research groups have already
used STITCH 3 in this way; a few examples illustrating
different utilities follow: STITCH has been used to deter-
mine which proteins cause side effects during drug treat-
ment (38,39) by combining the STITCH network with
data from a side effect database (40). The database has
also been instrumental for the identification of druggable
proteins to predict polypharmacological treatment of
diseases on the basis of network topology features (41).
For a method that predicts drug targets based on
chemogenetic assays in yeast, STITCH has been chosen
as a benchmark set (42). Lastly, STITCH has also been
integrated into other tools, for example ResponseNet2.0
and QuantMap (43,44).
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