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ABSTRACT 

 

The human adenovirus serotype 35 (HAdV-35, short Ad35) causes kidney and urinary 

tract infections, and infects respiratory organs of immunocompromised individuals.  

Unlike other adenoviruses, Ad35 has a low seroprevalence which makes Ad35-based 

vectors promising candidates for gene therapy.  Ad35 utilizes CD46 and integrins as 

receptors for infection of epithelial and hematopoietic cells.  Here, we show that 

infectious entry of Ad35 into HeLa, human kidney HK-2 cells and normal human lung 

fibroblasts strongly depended on CD46 and integrins but not heparan sulfate, and 

variably required the large GTPase dynamin.  Ad35 infections were independent of 

expression of the carboxy-terminal domain of AP180 which effectively blocks clathrin-

mediated uptake.  Ad35 infections were inhibited by small chemicals against the 

serine/threonine kinase Pak1 (p21-activated kinase), protein kinase C (PKC), sodium-

proton exchangers, actin and acidic organelles.  Remarkably, the F-actin inhibitor 

jasplakinolide, the Pak1 inhibitor IPA-3 or the sodium-proton exchange inhibitor EIPA 

blocked the endocytic uptake of Ad35.  Dominant-negative proteins or small interfering 

RNAs against factors driving macropinocytosis, including the small GTPase Rac1, Pak1 

or the Pak1 effector C-terminal binding protein 1 (CtBP1) potently inhibited Ad35 

infection.  Confocal laser scanning microscopy, electron microscopy and live cell 

imaging showed that Ad35 colocalized with fluid phase markers in large endocytic 

structures that were positive for CD46, alpha v integrins and also CtBP1.  Our results 

extend earlier observations with HAdV-3 (Ad3), and establish macropinocytosis as an 

infectious pathway for species B human adenoviruses in epithelial and hematopoietic 

cells.  
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INTRODUCTION 

 

Adenoviruses circulate widely in the human population, and most adults have been 

exposed to adenoviruses (13).  Currently, there are more than 54 HAdV serotypes 

known, and they have partly divergent entry pathways (for taxonomic details, see 

http://www.vmri.hu/~harrach/AdVtaxlong.htm).  HAdVs are classified into six species A 

to F.  Clinical manifestations of HAdV vary considerably, but commonly include cold 

symptoms, pharyngitis, tonsilitis, otitis, and pharyngoconjunctival fever. Less common 

are severe pneumonia, conjunctivitis, cystitis, encephalitis and meningitis (50, 81).  In 

immunocompromised patients and young military recruits, HAdVs cause life-threatening 

infections (49).   

 

The entry of the species C HAdV-2 (Ad2) and HAdV-5 (Ad5) is best characterized.  

Ad2/5 bind to the coxsackie B virus-Ad receptor CAR (8), and use -integrins as 

secondary receptors to induce receptor-mediated endocytosis involving clathrin, clathrin 

adaptors and the large GTPase dynamin (31, 34, 63, 102, 105).  These viruses also 

trigger accessory dynamin-independent macropinocytosis, which is not used to 

internalize Ad2/5 into cultured cells (63).  Macropinocytosis is, however, an important 

infectious pathway into epithelial cells for the species B1 HAdV-3 (Ad3, 3).  It is also an 

entry pathway for an increasing number of viruses from other families, such as vaccinia 

virus (67), echovirus 1 (43), Kaposi sarcoma herpes simplex virus (83) and Ebola virus 

(82).  Macropinocytosis has been associated with human immunodeficiency virus 1 

(HIV) infections in different cell types (27, 58, 60), but dynamin-dependent endocytosis 

of HIV has also been reported (70).   

 

Macropinocytosis is a form of endocytosis occurring at large scale.  It leads to the 

formation of large vacuoles, predominantly at the cellular periphery (97).  It often but not 

always involves ruffling protrusions from the plasma membrane that either fuse with 
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themselves or with the cell membrane and thereby engulf extracellular material (21).  

Macropinocytosis significantly contributes to antigen presentation in immune cells (66, 

104), and is used by viral and bacterial pathogens to reduce immune responses (68, 

97).  

 

The small GTPase Rac1 and dynamic actin filaments invariably control 

macropinocytosis.  Macropinocytosis also strongly requires p21-activated kinase Pak1 

(20), which binds and activates Rac1 (46), and variably depends on 

phosphatidylinositol-3-kinase (PI3K), Ras, and Src activities downstream of activated 

receptors.  In addition, macropinocytosis requires the C-terminal binding protein 1 

(CtBP1), which is phosphorylated by Pak1 and supports membrane fission or 

stabilization of the emerging macropinosomal vesicle (35, 56).  It is strongly blocked by 

inibitors of sodium/proton exchangers (103), such as amiloride or an amiloride analogue 

EIPA (37), which decrease cytosolic pH and thereby inhibit the activation of Rac1 and 

Cdc42 GTPases in submembranous zones (48).  Another hallmark of macropinocytosis 

is the dependency on protein kinase C (PKC) in both macrophages and epithelial cells 

(4, 5, 63).   

 

Ad35 is a member of the species B2 adenoviruses, which use CD46 as a primary 

receptor in epithelial and hematopoietic cells (26, 30), and integrins as coreceptors for 

infection of hematopoietic cells (72).  This virus was initially isolated from kidney of an 

immunocompromised individual (73).  Species B2 adenoviruses naturally infect the 

kidney and urinary tracts, and are sometimes fatal in immunocompromised individuals, 

possibly due to reemergence from a latent state (38, 53).  In addition, Ad35 is a 

promising vector for clinical gene transfer and vaccination, in part due to the low 

seroprevalence of neutralizing antibodies in the population (101).  For example, an 

Ad35-based malaria vaccine was shown to protect mice from Plasmodium falciparum 

sporozoites (78), and induced potent T-cell immunity (84).  In addition, Ad35 vectors 
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injected into tissues of nonhuman primates gave rise to specific gene expressions at 

sites of injection in most organs indicating the high versatility of Ad35 (87, 88).   

 

Here we examined the infectious entry pathway for Ad35 into human epithelial cells and 

human kidney 2 (HK-2) cells, and compared the results with host requirements for 

infectious entry of the species C Ad2/5.  Unlike Ad2/5, Ad35 uses macropinocytosis as 

an infectious uptake pathway.  It requires CD46, integrins, PKC, sodium/proton 

exchanger, actin, Rac1, Pak1 and CtBP1 but not heparan sulfate, which had been 

suggested to be involved in virus attachment to Chinese hamster ovary cells (99).  

These results mirror the infectious pathway into epithelial cells for the species B1 Ad3 

(3).  This is remarkable since Ad3 had been suggested to use other receptors besides 

CD46 (61, 95).  Notably, it was recently shown that Ad3 binds to the same region of the 

terminal short consensus repeat 1 (SCR1) and SCR2 of CD46 as Ad35, albeit with 

lower affinity than Ad35 (25, 26), and this leads to gene expression in high CD46-

expressing baby hamster kidney (BHK) cells, CHO cells or malignant glioma cells (36, 

95, 100).  Our results show that HAdVs of the species B1 and B2 use conserved entry 

pathways into epithelial cells which depend on CD46. 

 

 

 

MATERIALS AND METHODS 

 

Cells and viruses  

 

Normal diploid human embryonic lung-derived fibroblasts Wi-38 (CCL-75) were 

purchased from American Type Cell Culture Collection (ATCC) and grown in DMEM 

(Sigma) containing 10% FCS (Invitrogen).  HeLa-ATCC (CCL-2), HeLa-K, a variant of 
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HeLa-ATCC with particularly high transfection efficiencies was obtained from Dr. U. 

Kutay (Institute of Biochemistry, ETH Zurich, Switzerland).  Human melanoma M21, 

M21L and M21L4 cells were grown in DMEM (Sigma) containing 10 % FCS (Invitrogen) 

at low passage number as described (63).  M21 (positive for surface-expressed -

integrins), M21L cells (negative for -integrins) and M21L4 transfected with -integrin 

cDNA (24) were obtained from Dr. D. Cheresh (Scripps Research Institute, La Jolla, CA, 

USA).  Human kidney HK-2 cells originally isolated from kidney proximal tubular cells 

and immortalized with human papilloma virus 16 E6 and E7 proteins (86) was obtained 

from Dr. F. Verrey (Institute of Physiology, University of Zurich, Zurich), and propagated 

in K1-medium.  Human hematopoietic K562 cells were used as described (3).  CHO 

cells stably expressing GFP-CD46 were generated by transfection of CHO-15B6 cells 

with a pcDNA3.1-neo vector containing the CD46-BC1 sequence, and single clones 

were selected in G418 (1mg/ml) containing medium.  Ad35 was isolated from human 

bronchial epithelial A549 cells. Fluorescent tagging of Ad35 with Texas-Red (Molecular 

Probes, Leiden, The Netherlands) was performed as described (96).  Ad35-eGFP, Ad5-

eGFP and Ad2-ts1 were used as described (31, 74, 101).  HSV-1-eGFP was a kind gift 

from Dr. C. Fraefel (Institute of Veterinary Virology, University of Zurich,76).  3H-Ad35 

was generated as described in (33).   

 

 

Viral eGFP transduction experiments 

 

For infection analyses by wide-field microscopy or confocal laser scanning microscopy 

(CLSM) analyses cells were seeded onto glass coverslips in 24 well dishes.  

Alternatively, infection measurements were carried out in a Safire monochromator-

based microplate detection system (Tecan Group Ltd. Switzerland) using 96 well plates.  

Cells were infected with the indicated eGFP-expressing virus at a MOI 5 in warm 

DMEM-0.2% BSA (Sigma A9418) for 60 min, washed twice with warm DMEM-0.2% 

BSA and further incubated for 7 h, fixed in 3% paraformaldehyde for 25 min, quenched 



 7 

with ammonium chloride and prepared for analysis as indicated above.  Chemical 

interference with infection was performed by addition of compounds 30 min prior to 

infection in DMEM-0.2% BSA at 37°C.  Cells were infected in the presence of the 

inhibitors in DMEM-0.2% BSA for 60 min, washed twice and further incubated for 7 h.  

 

 

cDNAs, antibodies and chemicals 

 

Human K44A-Dyn2 and Dyn2 expression constructs were obtained from Dr. C. Lamaze 

(Pasteur Institute, Paris, France).  Plasmids expressing human Rac1 and T17N-Rac1 

were from Dr. A. Hall (University College, London, UK).  Expression plasmids encoding 

CtBP1-S (obtained from Dr. A. Colanzi and Dr. A. Luini, Department of Cell Biology and 

Oncology, Sta Maria Imbaro, Italy) were used to construct myc-tagged CtBP1 and 

S147A-CtBP1 (3).  Pak1 and Pak1 autoinhibitory domain (AID) constructs were 

obtained from Dr. J. Chernoff (Fox Chase Cancer Center, Philadelphia, PA, USA).  The 

following antibodies and chemicals were purchased as follows: anti-CtBP1 (BD-

Transduction Laboratories, Switzerland), anti-CD46 E4.3 (monoclonal, BD-Pharmingen, 

used for immunofluorescence analyses), anti-CD46 (polyclonal H-294, Santa Cruz, for 

Western blots), anti-CD46 (monoclonal MEM-258, used for inhibition 

experiments, Serotec Ltd, Oxford, United Kingdom), anti- 5 integrin (P1F6, 

monoclonal, Chemicon).  Secondary antibodies were goat anti-mouse or anti-rabbit 

coupled to Cy5 (Pierce).  The dynamin inhibitor dynasore (59) was purchased from 

Sigma and dissolved in DMSO.  Latrunculin was from Enzo Life Sciences, and cyclic 

tripeptide arginine-glycine-aspartate (single amino acid code cRGD) and cRAD (alanine 

substitution for glycine) peptides were obtained from Peptides International.  The PKC 

inhibitor Gö6976, the sodium/proton exchanger inhibitor EIPA, cytochalasin D and 

jasplakinolide were from Calbiochem.  The Pak1 inhibitor IPA-3 and its inactive 
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analogon PIR3.5 were obtained from Dr. J. Peterson (Basic Science Division, Fox 

Chase Cancer Center, Philadelphia, USA) (19).   

 

 

siRNA transfections 

 

HeLa-ATCC, HK-2 and A549 cells were transfected with 20 or 50 nM siRNA for 72 h or 

as indicated using Lipofectamine 2000 (Invitrogen) and the following siRNA.  Validated 

siRNAs were used against CtBP1 (GGAUAGAGACCACGCCAGUUU, Qiagen, (9)) and 

Pak1 (Qiagen, cat. no. SI00605696), against eGFP (Qiagen, No:1022064), CD46 

(Qiagen, as described by 30), and non-silencing scrambled siRNA 

(AGGUAGUGUAAUCGCCUUG dTdT, Microsynth, Switzerland). Clathrin heavy-chain 

(AACCUGCGGUCUGGAGUCAAC, Qiagen, (63). Dynamin2 

(GACAUGAUCCUGCAGUUCA, Qiagen). K562 cells were transfected with the indicated 

siRNA using Nucleofector I (Amaxa, Germany). 

 

 

Microscopy 

 

Spinning disc live cell microscopy images were recorded with a UplanApo100X 

objective (NA 1.35) on an Olympus IX81 inverted microscope (Olympus) equipped with 

a Yokogawa scanning head QLC100 (Visitron Systems GmbH, Puchheim, Germany), 

containing a triple bandpass excitation filter (488 nm/565 nm/647 nm, Chroma), and a 

NV 40/1CL piezo stepper for objective positioning (Piezosystem Jena).  Images were 

recorded onto a Cascade 512 electron multiplying charge coupled device camera 

(Photometrics) with 16 × 16 m2 pixel size.  Image acquisition was controlled 

MetaMorph software (Molecular Devices, Visitron Systems Germany).  Confocal laser 
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scanning microscopy was conducted with an inverted Leica SP5 microscope (Leica 

Microsystems, Switzerland) equipped with a 63x (oil immersion, NA 1.4) objective, a 

diode laser (405 nm excitation), an argon laser (458/476/488/496/514 nm excitation), a 

helium laser (561/594/633 nm excitation).  Wide-field microscopy was carried out with 

an Olympus IX81 equipped with an 40x UPlanApo 1.00 oil objective.  Cell shapes were 

drawn by hand and mean intensities of  eGFP-fluorescence per cell was measured from 

16 bit images using NIH ImageJ (http://rsbweb.nih.gov/ij/).  Samples for analysis by 

electron microscopy (EM) were fixed in 1.5% glutaraldehyde–2% formaldehyde in 0.1 m 

cacodylate buffer (pH 7.4) for 60 min and processed for quantitative transmission EM 

(TEM) analysis as described (31).   

 

 

Data representation and statistical analyses 

 

Images were batch-processed and contrast enhanced using Adobe-Photoshop.  Data 

were represented as the mean values from triplicates of a representative experiment 

with the indicated number of cells or viruses and the standard deviation. In EM studies 

error bars indicate the standard error of the mean.  P-values were derived from 

Students-t-tests.   
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RESULTS 

 

 

CD46 and integrin but not HSPG dependent Ad35 infection of HeLa-ATCC and HK-

2 cells 

 

We first tested the receptor requirements for Ad35 for infection of HeLa-ATCC and 

human kidney (HK) 2 cells (86) by small interfering RNA (siRNA) mediated CD46 

knock-down.  A 45% or 72% reduction of the CD46 levels in HeLa-ATCC and HK2 cells 

inhibited Ad35-mediated transduction of eGFP by 50% and 78%, respectively (Fig. 1A, 

B).  This result was confirmed with an Ad35 infection-neutralizing monoclonal antibody 

directed against the short consensus repeat region (SCR) 1 of CD46 (26), which gave a 

robust dose-dependent inhibition of Ad35 but not Ad5-mediated eGFP transduction in 

HeLa-ATCC, HK-2 and Wi-38 normal lung fibroblasts (Fig. 1C,D).  This provided 

confirmatory evidence that CD46 has a major role for infection of both HeLa-ATCC and 

HK-2 cells, in agreement with earlier results from HeLa cells, human bronchial epithelial 

A549 cells and hematopoietic cells (25, 26, 30).     

 

All sequenced HAdV serotypes, except for Ad40 and Ad41 that infect the digestive tract 

(2) contain an arginine-glycine-aspartate (single amino acid code RGD) motif which 

binds integrin and is contained in extracellular matrix proteins (85).  Therefore, we 

investigated the involvement of integrins in Ad35 infection.  The RGD motif in the Ad2 

penton base had been shown to bind soluble alpha v beta 5 integrin heterodimers (12).  

The attachment of 3H-radiolabelled Ad35 to human melanoma M21L cells lacking  

integrins (24) was not significantly inhibited compared to  positive M21 cells (Fig. 1E).  

Both Ad35- and Ad5-mediated eGFP transduction of M21L cells was, however, strongly 

reduced compared to M21L4 cells transfected with  integrin cDNA or native M21 cells 
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(not shown), indicating that  integrins support Ad35 transduction of epithelial cells 

(Fig. 1F).  A role for integrins was further strengthened by the finding that Ad35-eGFP 

expression in Wi-38 cells was significantly reduced by the soluble integrin ligand cRGD 

but not cRAD peptides (Fig. 1G).  These results were in agreement with an earlier 

report showing that integrins are involved in Ad35 transduction of human hematopoietic 

cells (72).   

 

It was recently suggested that Ad35 uses heparan sulfate proteoglycans (HSPGs) for 

attachment to CHO cells in the absence of CD46 receptors, as concluded from 

competition experiments with soluble heparin (99).  To address if HSPGs were involved 

in Ad35 infection of HeLa-ATCC or HK-2 cells, we preincubated Ad35-eGFP with 

increasing concentrations of heparin for 30 min added the mixture to HeLa-ATCC or 

HK-2 cells for 8 hours at MOI 5 and measured eGFP transgene expression.  

Unexpectedly, we did not observe any significant inhibition or stimulation of eGFP 

expression with Ad35 in both cell types (Fig. 1H, I).  We did however find a strong block 

of herpes simplex virus 1 (HSV1) mediated eGFP transduction, as reported earlier 

(107).   We concluded that HSPGs are not involved in Ad35 infection of the CD46-

positive HeLa and HK-2 cells. 

 

 

Cell type-dependent requirement of dynamin for Ad35 infection 

 

Ligation of CD46 by antibodies or Ad3 has been shown to trigger clathrin-mediated 

endocytosis or dynamin-independent macropinocytosis, depending on the degree of 

CD46 crosslinking (3, 16, 95).  By transfecting cells with dominant-negative K44A-dyn2 

tagged with mRFP for 24 hours followed by inoculation of the cells with Ad35-eGFP, we 

found that Ad35 transduction of HeLa-ATTC cells was independent of K44A-dyn2, in 

contrast to Ad5-eGFP (Fig. 2A, B).  Ad35 infection of HeLa-K cells, however, was 
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dynamin-dependent (Fig. 2C), exactly as reported for Ad3 (3).  To test if dynamin-

dependent Ad35 infection of HeLa-K cells required a clathrin related pathway, we 

overexpressed the carboxy-terminal clathrin heavy chain binding domain of AP180 (aa 

530-915), which blocks clathrin recruitment to the plasma membrane (28), and inhibits 

clathrin-mediated endocytosis (71).  It also inhibits infectious clathrin and dynamin-

dpendent endocytosis of Ad2 (31).  We found that Ad35 infection of HeLa-K cells was 

not inhibited by the C-terminal domain of AP180, unlike Ad5-eGFP transduction (Fig. 

2C).  In support of this, the dynamin inhibitor dynasore (59) had no significant effects on 

Ad35 transduction but affected Ad5 transduction of Wi-38 cells (Fig. 2D).  This 

suggested that Ad35 entry into HeLa-K cells was at least partly dependent on dynamin 

and most likely clathrin, and Ad35 entry into HeLa-ATCC and Wi-38 cells was dynamin-

independent. 

 

 

Macropinocytosis inhibitors block infectious Ad35 uptake into epithelial cells 

 

To analyze the dynamin-independent infection pathway of Ad35 we treated HeLa-

ATCC, HK-2 or Wi-38 cells with pharmacological inhibitors of macropinocytosis.  The 

classical inhibitors of macropinocytosis amiloride and its derivative 5-(N-ethyl-N-

isopropyl) amiloride (EIPA) block the sodium/proton exchangers, lead to mild 

acidification of the cytosol, alter the subcellular localization of early and late endosomes, 

and possibly raise the lumenal pH of mildly acidic organelles (29).  Likewise, millimolar 

concentrations of NH4Cl inhibit macropinocytosis (15) possibly by acidification of the 

cytosol and effects on actin dynamics (39).  We found that low micromolar 

concentrations of EIPA inhibited Ad35-eGFP transduction of HeLa-ATCC, HK-2 and Wi-

38 cells (Fig. 3A, H), similar as millimolar concentrations of NH4Cl in HeLa-ATCC, HK2 

or Wi-38 cells (Fig. 3B, and not shown).  In contrast, the proton ATPase inhibitor 

bafilomycin A1 (Baf) did not affect Ad35-eGFP transduction of HeLa or HK-2 cells, 

except at the very highest concentration of 100 nM where it decreased Ad35-eGFP 
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transduction by 10 to 25% (Fig. 3C).  It did not affect Ad35-eGFP transduction of Wi-38 

cells (not shown).  In contrast, Baf (50 nM) reduced human rhinovirus serotype 16 

infection of HeLa cells at least 20-fold compared to control cells, and blocked 

acidification of endosomal organelles (Neugebauer, Jurgeit, Greber, unpublished 

observations), suggesting that vacuolar ATPases are not required for infectious Ad35 

entry.  

 

Another class of commonly used inhibitors of macropinocytosis are actin-directed 

compounds.  Macropinosome formation involves filamentous (F)-actin, and is sensitive 

against pharmacological inhibitors (65, 68), including jasplakinolide (Jas), which 

stabilizes actin polymers, cytochalasin D (CytD), which blocks actin polymerisation at 

the barbed ends of F-actin, and the G-actin binding marine macrolide latrunculin B 

(LatB) (10, 18, 80).  Both Jas and CytD inhibited Ad35-eGFP transduction of HeLa-

ATTC and HK-2 cells in a dose-dependent manner (Fig. 3D), and LatB inhibited Ad35-

eGFP transduction of Wi-38 cells (Fig. 3I).    

 

A further requirement for macropinocytosis is the activation of calcium and 

diacylglycerol-dependent protein kinase C (PKC) family members (4, 69).  PKC 

activators induce ruffling and fluid uptake by various mechanisms involving signal 

transduction at the plasma membrane, which can be inhibited for example by the 

calcium-dependent PKC inhibitor Gö6976 (17, 63).  The treatment of HeLa-ATCC or 

HK-2 cells with Gö6976 lead to a dose-dependent inhibition of Ad35-eGFP transduction 

(Fig. 3E), similar to Ad3 which uses PKC-dependent macropinocytosis for infectious 

entry into epithelial cells (3).  Interestingly, Gö6976 had no effect on Ad35-eGFP 

transduction of Wi-38 cells suggesting a cell type-variable involvement of PKC in Ad35 

infection (data not shown).  
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An important regulator of macropinocytosis is the serine/threonine kinase p21-activated 

kinase (Pak) (20, 68).  We treated cells with the Pak inhibitor IPA-3, which allosterically 

blocks autoinhibited Pak1 and related isoforms of this kinase (19).  Ad35 transduction of 

HeLa-ATCC, HK-2 or Wi-38 cells was inhibited by IPA-3 in a dose-dependent manner, 

but not by an inactive IPA-3 related compound PIR3.5 (Fig. 3F, J).  In HeLa-ATCC or 

HK-2 cells, IPA-3 treatment specifically inhibited Ad35-eGFP without affecting Ad5-

eGFP transduction (Fig. 3G), although Ad5 transduction of Wi-38 cells was sensitive to 

IPA-3 at low micromolar concentrations (Fig. 3K). It is possible that Paks are 

overexpressed and/or hyperactivated in HeLa cells, consistent with the notion that 

signalling pathways in human tumor cells differ from those in normal tissue (23).  Ad5 

could thus circumvent Pak-1 inhibition in cancer cells by using other signalling 

pathways, which are not upregulated or absent in normal human diploid fibroblasts Wi-

38 cells.  Noteably, our earlier data showed that in cancer cells Ad2/5 depends on 

dynamin and clathrin-mediated pathways (31), activates Pak1 and triggers accessory 

Pak1-dependent macropinocytosis as indicated by RNA interference (3, 63).  We 

conclude that Ad35 transduction is sensitive to inhibition of macropinocytosis.   

 

We next used electron microscopy (EM) to determine the subcellular localization of 

Ad35 in epithelial HeLa-ATCC cells.  Time course analyses showed that Ad35 particles 

were rapidly and efficiently cleared from the plasma membrane, and more than 50% of 

the virus particles localized to the cytosol at 30 min pi (Fig. 4A, for a representative 

image, see Fig. 4B).  This indicated rapid viral uptake and endosomal escape with 

estimated half maximal times of 7 and 15 min, respectively.  EIPA, Jas and IPA-3 

delayed viral uptake into cells, and strongly reduced Ad35 localization in the cytosol 30 

min pi (Fig. 4C).  This suggested that infectious Ad35 endocytosis required sodium-

proton exchangers, dynamic F-actin and Pak1.   

 

We next analyzed if actin inhibition by Jas, or Pak1 inhibition by IPA-3 affected the 

dynamics of the plasma membrane during entry of Texas-Red-labeled Ad35 (Ad35-TR).  
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For this, we monitored the localization of eGFP-tagged human CD46 BC1 splice form in 

stably transfected Chinese Hamster ovary cells (CHO-GFP-CD46) in warm infected 

cells 5 to 15 min pi.  CHO cells are CD46-negative and resistant to Ad35 infection, 

whereas GFP-CD46 expression in these cells (CHO-CD46) mediates Ad35 transduction 

similar to CD46-expression (data not shown, and 25, 26, 30).  Control infected or 

noninfected cells showed extensive dynamics of the plasma membrane marker GFP-

CD46, including membrane ruffling and protrusions, which we call here collectively 

‘wobbling ruffles’, and frequent events of virus and CD46 colocalizations were observed 

(Fig. 5A, Suppl. Mov. 1, and Fig. 5D , Suppl. Mov. 4).  In contrast, the wobbling ruffles of 

GFP-CD46 at the plasma membrane were strongly suppressed in cells treated with Jas, 

although Ad35-TR particles readily associated with the cell periphery, and remained 

confined there throughout the observation period (Fig. 5B, and Suppl. Mov. 2).  

Likewise, the Pak1 inhibitor IPA-3 suppressed to a large extent the peripheral wobbling 

of GFP-CD46 (Fig. 5C and 5F, Suppl. Mov. 3).  Significantly, the virus particles in the 

cell periphey remained confined and were largely immobile, suggesting that IPA-3 

inhibited viral uptake into cells (see Fig. 4B).  Interestingly, viruses that were attached to 

protruding filopodia-like extensions of control or IPA-3 treated cells moved towards the 

cell body.  Such movements were not observed in Jas-treated cells where filopodia-

associated viruses remained stationary.  This is consistent with earlier results showing 

that filopodial dynamics can be blocked by Jas which freezes F-actin (10, 93).  Pak1 

apparently does not contribute to filipodial surfing of Ad35.  Whether filopodial surfing of 

Ad35 contributes to infection remains to be analyzed.   

 

 

Pak1 and CtBP1 facilitate infectious Ad35 macropinocytosis 

 

Pak1 is activated by the small GTPase Rac1 (Ras-related C3 botulinum toxin substrate 

1) during growth factor-stimulated macropinocytosis, cell adhesion and motility (41), and 

is implicated in endocytosis of interleukin-2 receptor (32), and infectious 
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macropinocytosis of Ad3 and vaccinia virus (3, 67).  The expression of dominant-

negative Rac1 (mutated threonine 17 to asparagine, T17N) inhibited the expression of 

Ad35-eGFP by about 50% (Fig. 6A, B).  Likewise, the autoinhibitory domain of Pak1 

reduced Ad35-eGFP levels by about 70% but did not affect Ad5-eGFP (Fig. 6C, D) 

supporting the notion that Pak1 is involved in species B but not species C adenovirus 

infections (3).   

 

Activated Pak1 phosphorylates the transcriptional repressor C-terminal binding protein 1 

(CtBP1) at serine 147 in the nucleus, and recruits CtBP1 into the cytoplasm (7).  There 

are two splice forms of CtBP1, a short form truncated by 11 amino acids (also called 

CtBP3/BARS) and a long form (CtBP1).  Both forms control dynamin-independent 

endocytosis (9), membrane fission and endocytic cup formation (3, 43, 56).  We found 

that the expression of dominant-negative, phosphorylation-defective CtBP1 (serine 147 

to alanine mutation, S147A), but not the phosphomimetic mutant S147D reduced Ad35-

eGFP by about 35% without affecting Ad5-eGFP (Fig. 6E, F).  These results were 

corroborated by siRNA experiments against Pak1 and CtBP1 in HeLa-ATCC and 

human alveolar epithelial A549 cells.  Knock-down of Pak1 by 65% and CtBP1 by 35% 

(measured by Western blotting in HeLa cells) reduced Ad35 transduction between 40 

and 60%, depending on the cell type, but without affecting Ad5-eGFP expression (Fig. 

6G, H, data not shown).  Control siRNAs against eGFP inhibited both Ad35- and Ad5-

eGFP expression (Fig. 6G).  Similar to epithelial cells, Ad35-eGFP transduction of 

hematopoietic K562 cells was inhibited by CtBP1 siRNA but not clathrin siRNA, 

analogous to an earlier report for Ad3 (3).  We concluded that CtBP1 supports Ad35 

infection.   

 

Both Pak1 and CtBP1 are involved in macropinocytosis, which engulfs a large amount 

of fluids into cells.  We tested if Ad35 induced the endocytic uptake of fluid phase into 

HeLa-ATCC cells.  Ad35 was bound to HeLa-ATCC in the cold, free virus washed off, 

and cells incubated in warm medium and pulsed with dextran-FITC for 5 min prior to 
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analyses of acid-washed cells for intracellular dextran by flow cytometry.  We found a 

peak of fluid-phase uptake 10 min post warming indicating that Ad35 transiently induced 

dextran uptake (Fig. 7A), similar to Ad2/5 and Ad3 (3, 40, 63, 64).  Multichannel 

confocal immunofluorescence analyses revealed that dextran and Ad35-TR positive 

endosomes contained CD46, alpha v integrins and to a lower degree also CtBP1 at 10 

min pi (Fig. 7B).  Noninfected cells did not contain detectable dextran-FITC positive 

endosomes under these pulse labeling conditions, indicating that the dextran-positive 

endosomal structures described in Fig. 7B were virus induced (Fig. S1).  Quantitative 

analyses using wide field fluorescence microscopy showed that 91% of the dextran-

filled vesicles in Ad35 infected cells were positive for CD46, essentially all were alpha v 

integrin positive, and 77% were positive for CtBP1 (Fig. S2).   

 

Transmission electron microscopy showed that Ad35 particles were in large endosomes 

10 min pi several micrometers in diameter (Fig. 7C).   These endosomes contained 

cointernalized BSA-gold.  To test if macropinocytosis contributed to the levels of BSA-

gold in Ad35 positive endosomes, we compared the amounts of BSA-gold in 

endosomes containing Ad2-ts1.  Ad2-ts1 enters cells by dynamin and clathrin-mediated 

endocytosis in the absence of macropinocytic stimulation (31, 40).  More than 90% of 

the endosomal Ad35 particles were in BSA-gold positive vesicles, whereas about 65% 

of the Ad2-ts1 particles were in gold-positive endosomes (Fig. 7D).  We found that 

about 60% of the total BSA-gold particles were in Ad35-positive endosomes, whereas 

about 15% of the total BSA-gold were in Ad2-ts1 positive endosomes. This strongly 

supported the conclusion that Ad35 was predominantly in fluid-enriched endosomes 10 

min pi.  Together the data indicate that Ad35 induces CD46 and integrin-dependent 

macropinocytosis for infectious uptake into epithelial HeLa-ATCC and kidney HK-2 cells 

as well as hematopoietic cells (see Fig. 8 for a schematic overview).   
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DISCUSSION 

 

Adenoviruses cause infectious disease and significant health problems across the 

world.  Therapeutic forms of adenoviruses are increasingly developed to treat human 

diseases, including cancer and immune disorders (92, 98).  Research in the past years 

has shown that both virulent and therapeutic viruses strongly depend on host factors for 

eliciting therapeutic or disease phenotypes (for overviews, see 47, 92, 94).  Here, we 

analyzed the early interactions of Ad35 with cultured human cells, and show that they 

involve macropinocytosis of CD46-associated Ad35 particles.  Unlike an earlier study in 

CHO cells (99), we found no requirement of heparan sulfate proteoglycans for Ad35 

infection of HeLa or human kidney HK-2 cells, which emphasizes the importance of 

CD46 for infectious entry of Ad35 (30).  This is in line with earlier findings showing that 

the species B1 Ad3 uses macropinocytosis for infectious uptake into epithelial and 

hematopoietic cells (3).  Noteably, Ad35 is one of several species B human 

adenoviruses which have been shown to bind with their fiber knobs to CD46 (25, 26, 30, 

79).  Other CD46-tropic adenoviruses include Ad3 (95), Ad11 (91), Ad14, Ad16, Ad21 

and Ad50 (30), and also the species D Ad37 (106) and Ad49 (54).  It is possible that 

members of the species B HAdVs use CD46 with different affinities or by unknown 

mechanisms, or bind to additional receptors.   

 

In addition to binding to the species B HAdVs, CD46 also binds the Edmonston strain of 

measles virus (22, 75), human herpes virus 6 (89), bovine viral diarrhea virus (62), and 

various bacteria including uropathogenic E. coli (55, 57).  The selection of CD46 as a 

receptor for numerous pathogens suggests that there are advantages for pathogens to 

bind to CD46, e.g. dampening or suppression of innate immune responses (44, 77).  

The ubiquitously expressed human CD46 is involved in the control of complement lysis 

and inhibition of T cell effector functions (6, 45).  The cytoplasmic splice variant 1 of 
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CD46 controls the induction of autophagic degradation (42), which can lead to 

enhanced presentation of antigenic peptides to major histocompatibility complexes of 

the class II and promote adaptive immune responses and inflammation (90).  Although 

both cytoplasmic splice variants 1 and 2 of CD46 have been found to bind Ad3 and 

Ad35 (30, 95), it is unknown if binding of HAdVs to CD46 induces autophagy. 

 

Our data here indicate that Ad35 induced infectious CD46-dependent macropinocytosis, 

similar to Ad3 in epithelial cells (3), and this could be related to integrin-dependent Ad35 

infection of hematopoietic cells (72).  The pathway that we delineate for Ad35 infection 

involves alpha v integrins, independent of clathrin-mediated endocytosis, as concluded 

from insensitivity against dynamin inhibition by dynasore, dominant-negative constructs 

or siRNA in HeLa-ATCC, Wi-38 human lung fibroblasts, A549 cells or hematopoietic 

K562 cells.  Interestingly, K44A-dynamin inhibited the transduction of Ad35 in HeLa-K 

cells, a variant of HeLa-ATCC, but infection of these cells was not affected by the C-

terminal fragment of AP180, which binds to clathrin and blocks clathrin-mediated 

endocytosis (28).  This is similar to Ad3 transduction reported earlier (3).  Since 

dynamin interference inhibited the uptake of transferrin, a classical ligand for clathrin-

mediated endocytosis, to a similar extent in both HeLa-ATCC and HeLa-K cells, we 

speculate that in certain cell types, such as HeLa-K, dynamin supports Ad3 and Ad35 

transduction at the level of endosomal trafficking (51, 52).  This speculation could be 

supported by an earlier finding that the clathrin binding protein CALM (clathrin assembly 

lymphoid myeloid) is required for infection with wild type Ad2 but not the endosomal 

escape-defective mutant Ad2-ts1 (40).   

 

The requirements for infectious endocytosis of Ad35 into human epithelial cells closely 

reflect those for macropinocytosis, as indicated by drug sensitivity and morphological 

analyses at the level of light microscopy and EM.  We found a strong but cell-type 

dependent requirement of Ad35 transduction for PKC, and a strong cell-type 

independent requirement for the sodium/proton exchanger, actin and Pak1 in HeLa-



 20 

ATCC, HK-2 and Wi-38 cells, as well as the actin modulator Rac1 and the Pak1 effector 

CtBP1 in HeLa-ATCC and HK-2 cells.  CtBP1 is commonly acting as a transcriptional 

repressor and membrane organizer (11, 14).  Ad35 colocalized with its receptors CD46 

and -integrins in dextran-filled macropinosomes and was associated with dynamic 

GFP-CD46 clusters early in infection.  These endosomes were positive for CtBP1, 

unlike noninfected cells, suggesting that CtBP1 was recruited to Ad35-positive 

membrane domains, possibly from the nucleus upon phosphorylation by Pak1 (7).  This 

was supported by the finding that dominant-negative phosphorylation defective CtBP1 

inhibited Ad35 transduction.  Since macropinocytosis has been implicated in immune 

suppression, for example in the uptake of apoptotic bodies (1), it is possible that 

Pak1/CtBP1 dependent macropinocytosis leads to transcriptional depression, and 

silences immune responses.   

 

Together, our results provide supportive evidence that crosslinking of CD46 by 

multivalent Ad35 particles leads to the formation of macropinocytic vesicles, similar to 

crosslinking induced by anti-CD46 antibodies or measles virus which triggered the 

formation of pseudopodia and macropinocytic engulfment of CD46 (16).  This indicates 

that macropinocytosis is an infectious uptake route exploited by an increasing number 

of pathogens, and has implications for gene delivery and vaccination strategies. 
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FIGURE LEGENDS 

 

Fig. 1: CD46 and alpha-v-integrins are required for Ad35 infection but not HSPG.  

 

(A) HeLa-ATCC (left) or HK-2 (right) were transfected with 20 nM siRNAs against  

CD46, GFP or non-silencing scrambled (scr) for 72 h and infected with Ad35-eGFP 

(MOI 5) or Ad5-eGFP (MOI 5) for 8 h, followed by Safire fluorescence analysis.  (B) 

Quantification of knock-down efficiency by Western blots against CD46, normalized 

against calnexin.  (C) HeLa-ATCC (left) or HK-2 (right) or Wi-38 cells (panel (D)) were 

preincubated with an inhibiting antibody against CD46 (MEM-258) in the cold for 30 min, 

and infected for 8 h or 15 h, respectively.  (E) 3H-Ad35 was bound to human melanoma 

M21L cells lacking alpha v integrin or M21 alpha v integrin positive cells.  (F) M21L or 

M21 cells were infected with Ad35-eGFP or Ad5-eGFP, and analyzed by Safire 

fluorescence analyses.  (G) Wi-38 cells were preincubated with cRGD or cRAD 

peptides in the cold for 30 min and infected with Ad35-eGFP for 15 h.  (H, I) Ad35-eGFP 

(MOI 5) or HSV-1-eGFP (MOI 5) were preincubated for 30 min with different 

concentrations of heparin as indicated followed by inoculation of HeLa-ATCC or HK-2 

cells for 8 h, and infection analyses with a Safire2 plate reader after normalization to the 

cell numbers determined by DAPI staining (see Materials and Methods).  Note that 

Ad35-eGFP transduction was not affected, whereas HSV-1-eGFP transduction was 

strongly reduced in both cell lines. 

 

 

Fig. 2: Cell type specific requirements of dynamin.  

 

HeLa-ATCC or HeLa-K cells were transfected with dominant-negative mRFP-Dyn2-

K44A, mRFP-Dyn2-wt or mRFP for 24 h, and infected with Ad35-eGFP or Ad5-eGFP 
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(MOI 5) for 8 h.  (A) Representative images of transfected and infected HeLa-ATCC, 

fixed and recorded for mRFP and GFP fluorescence in a wide-field microscope.  (B) 

NIH ImageJ quantification of total fluorescence intensities.  (C) HeLa-K cells were 

transfected as in (A) and in addition with the carboxy-terminal domain of AP180, 

infected and assayed by FACS.  Dominant-negative K44A-Dyn2 inhibited both Ad35-

eGFP and Ad5-eGFP, whereas carboxy-terminal domain of AP180 had no effects on 

Ad35-eGFP but inhibited Ad5-eGFP by 40%.  (D) Dynasore independent transduction of 

Wi-38 cells by Ad35-eGFP (left) and dynasore-dependent transduction by Ad5-eGFP 

(right panel) in the absence of cell toxicity indicated by cell number measurements 

shown with grey line graphs, with 100% representing noninfected non-drug treated 

conditions.  

 

 

Fig. 3: Inhibitors against Pak1, PKC, sodium/proton exchanger and actin reduce 

Ad35-eGFP transduction.  

 

HeLa-ATCC and HK-2 were preincubated with indicated concentrations of drugs for 30 

min, and infected with Ad35-eGFP for 8 h.  Cells were analyzed on a Safire2 plate 

reader and eGFP intensities normalized to the DAPI signal of the cell nuclei 

representing cell numbers.  Results for EIPA are shown in panel (A), NH4Cl in (B), 

bafilomycin (Baf) in (C), jasplakinolide (Jas) and cytochalasin D (CytD) in (D), the PKC 

inhibitor Gö6976 in (E), and the Pak1 inhibitor IPA-3 and its inactive derivative PIR3.5 in 

(F) and (G) for both Ad35-eGFP and Ad5-eGFP, respectively.  Panels H-K show results 

with macropinocytic interference in Wi-38 cells transduced with Ad35-eGFP or Ad5-

eGFP.  Note the absence of significant cell toxicity as indicated by cell number 

measurements shown with grey line graphs, with 100% representing noninfected non-

drug treated conditions.  
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Fig. 4: EM analysis of Ad35 entry into HeLa-ATCC cells 

 

(A) Cells on glass coverslips were incubated with double CsCl purified Ad35 particles 

for 90 min in the cold at high MOI of 5000, washed extensively, warmed to 37°C in 

growth medium containing 0.2% BSA for indicated times, fixed and processed for 

quantitative transmission EM analyses of virus particles at the plasma membrane, in 

endosomes and in the cytosol.  Half maximal time points for endocytic uptake and 

penetration into the cytosol were 7 and 15 min, respectively.  (B) Electron micrograph of 

an Ad35-infected HeLa-ATCC cell 30 p.i.. Stars depict virus particles in the cytosol, 

arrows particles in endosomes and arrowheads at the plasma membrane.  (C) The 

same experiment was repeated with cells treated or not treated with the sodium/proton 

inhibitor EIPA (50 µM), the F-actin stabilizer Jas (300 nM) or the Pak1 inhibitor IPA-3 

(25 µM), and infected for 30 min.  

 

 

Fig. 5: Ad35-TR is associated with GFP-CD46 clusters early in infection.  

 

Stably transfected CHO-GFP-CD46 cells were infected with Ad35-TR (1 µg/ml) for 5 

min, and recorded in a spinning disc confocal microscope equipped with a warm 

chamber at 37° C from 5 min to 15 min p.i. at acquisition frequency of 0.06 Hz.  Panel 

(A) shows a control cell with extended wobbling of GFP-CD46 membrane domains and 

frequently overlapping signals of CD46 and Ad35-TR.  Panel (B) shows a cell pretreated 

with 300 nM Jasplakinolide (Jas) for 30 min and (C) depicts a cell pretreated with 25 µM 

IPA-3.  Time stamps are in min (‘).  (D) Analyses of GFP-CD46 wobbling ruffles with 

schematic drawing shown in (E) of an untreated, infected cell with two zoom-in views 

marked * and ** with the corresponding time stamp min (‘) and seconds (‘’) p.i..  (F) 
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Quantitative boxplot analyses of wobbling ruffles in control noninfected cells, infected 

cells and infected cells treated with Jas or IPA-3.  

 

 

Fig. 6: Rac1, Pak1 and CtBP1 are required for Ad35-eGFP transduction of HeLa-

ATCC cells.  

 

Cells were transfected with indicated constructs for 24 h, and infected for 8 h, fixed, 

recorded in a wide-field microscope and analyzed with ImageJ.  (A) Representative 

images of dominant-negative mRFP-T17N-Rac1 or Rac-wt transfected cells.  (B) 

Quantification of the mean fluorescence intensity per cell with indicated number of cells 

(n).  (C) Representative images of Pak1-autoinhibitory domain (AID) transfected cells 

infected with Ad35-eGFP or Ad5-eGFP, and quantification of the mean fluorescence 

intensity per cell (D).  (E) Representative images of phosphorylation defective CtBP1-

S147A transfected cells infected with Ad35-eGFP or Ad5-eGFP.  (F) Quantification of 

the mean fluorescence intensity of GFP expression per cell in wild type (wt) CtBP1, 

S147A and S147D CtBP1 mutants.  (G) Cells were transfected with 50nM siRNA 

against indicated targets for 72 h, infected for 8 h and analyzed with Safire2.  Cell 

numbers were normalized to DAPI signal.  (H) Knock-down quantification of Pak1 and 

CtBP1 by Western blot, normalized against calnexin.  (I) A549 cells were transfected 

with 20 nM siRNA against CtBP1, Pak1 or dynamin2 for 48 h, infected with Ad35-eGFP 

(16h) and analyzed by flow cytometry.  K562 cells were transfected with 20 nM siRNA 

against CtBP1 or clathrin heavy-chain (CHC) as described (3), infected with Ad35-eGFP 

(16h) and analyzed by flow cytometry. 

 

 

Fig. 7: Ad35-TR induced fluid phase uptake and colocalizes with CD46, integrins 

and CtBP1 in dextran-filled macropinosomes.  
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(A) Ad35 (2 mg/ml) was cold bound to HeLa-ATCC cells for 1 h. Cells were washed, 

pulsed with dextran-FITC (0.5 mg/ml) in warm medium (37°C) containing BSA 5 min 

before the indicated time points, and prepared for flow cytometric analysis.  (B) Cells 

were cold-bound with Ad35-TR (1 µg/ml) for 1 h, washed and incubated at 37°C in the 

presence of dextran-FITC (0.5 mg/ml) for 10 min, fixed, stained for the indicated 

antigens and analyzed by confocal laser scanning microscopy with corresponding 

differentail interference contrast (DIC) images.  Fluorescence images represent single 

sections, and inlets are magnifications of the white boxed areas.  (C) Electron 

micrograph of an Ad35 infected HeLa-ATCC cell (cold synchronized infection at MOI 

5000), pulsed in the presence of BSA-nano-gold for 10 min.  Arrowheads indicate BSA-

gold particles, black arrows show Ad35 in BSA-gold positive endosomes, white arrows 

show virus particles in endosomes without BSA-gold, small triangles indicate viruses at 

the PM, and stars depict Ad35 particles in the cytosol.  (D) Quantification of (C), 

including HeLa-ATCC cells inoculated with Ad2-ts1 which is defective in endosomal 

escape.  N indicates number of virus particles and n number of BSA-gold particles.  

 

 

Fig. 8: Schematic model of infectious macropinocytosis of Ad35 in human 

epithelial cells.  

 

Ad35 binds to CD46 and alpha v-integrins independently of heparan sulfate 

proteoglycans (HSPGs).  Ad35 is internalized in an actin, Rac1, Pak1, CtBP1 and PKC 

dependent manner and localizes to dextran-filled vesicles with its receptors CD46, 

alpha v integrins and also CtBP1.  Ad35 escapes to the cytosol by an unknown 

mechanism and traffics to the nucleus for infection.  
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Supplemental figures 

 

Fig. S1: Immunofluorescent stainings of CD46, -integrins or CtBP1 in non-

infected cells.  

HeLa-ATCC were incubated with 0.5 mg/ml Dextran-FITC for 10 min at 37°C in the 

absence of virus.  Cells were fixed, and processed for immunofluorescence analyses as 

indicated in Fig. 7B.  Images represent single sections. 

 

Fig. S2: Quantification of Ad35 induced dextran-FITC filled vesicles containing 

CD46, -integrins and CtBP1.  

Dextran-FITC uptake was induced by Ad35 with a 10 min pulse as described in Fig. 7A. 

Samples were fixed and analyzed by wide-field microscopy.  Panel (A) displays 

representative sample images for all three marker proteins.  Panel (B) shows the 

quantification of dextran-FITC positive vesicles for the presence of CD46 (n=70), -

integrins (n=63) or CtBP1 (n=61), displayed as percentage of macropinosomes positive 

for CD46, -integrins or CtBP1 by boxplot analyses.  

 

 

Supplemental movies S1-S4: Dynamics of eGFP-CD46 and Ad35-TR in control 

cells and cells treated with Jasplakinolide (Jas) or IPA-3.  

 

Stably transfected CHO-GFP-CD46 cells were infected with Ad35-TR (Texas Red, 1 

µg/ml) for 5 min and recorded in a spinning disc confocal microscope equipped with a 

warm chamber at 37° C from 5 min to 15 min p.i. with an acquisition frequency of 0.06 
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Hz.  Supplemental movie 1 shows control cells infected with Ad35-TR.  Supplemental 

movie 2 shows cells treated with Jas (300 nM), and supplemental movie 3 shows cells 

treated with IPA-3 (25 µM).  Supplemental movie 4 shows GFP-CD46 wobbling ruffles 

of infected control cells 5 to 20 min pi.  Still images of these movies are shown in Fig. 

5A-D.   
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